1,204 research outputs found

    APPROPRIATE STATISTICAL METHODS FOR COMPARING SOURCES OF NUTRITIONAL METHIONINE

    Get PDF
    Kratzer and Ash(1996) presented Experimentation Science as a process to accomplish the Scientific Method with a complete protocol including relevant statistical design and analyses The first principal to sound Experimentation Science is the principle of Relevance. This is a case study primarily of Relevance in Experimentation Science. In our consulting work we found a so called “performance” design as not relevant because of the use of null hypothesis testing to promote a concept of equivalence. The best alternative involves equivalence testing, more replication and representative-ness. Secondly we found a dose response design for two products where non-linear asymptotic regression is misused in applying Bioassay techniques to estimate a single relative biological efficacy (RBV) because the basic assumption of sameness of mathematical form does not hold. We offer a relevant model which involves predicted differences in the relevant zone of commercial use (Vazquez- Añón, M et al, 2006b, Gonzales-Esquerra et al, 2007)

    The potential for arms race and Red Queen coevolution in a protist host-parasite system

    Get PDF
    11 pages, 6 figures, supporting information http://onlinelibrary.wiley.com/doi/10.1002/ece3.1314/suppinfoEcology and Evolution published by John Wiley & Sons Ltd. The dynamics and consequences of host-parasite coevolution depend on the nature of host genotype-by-parasite genotype interactions (G × G) for host and parasite fitness. G × G with crossing reaction norms can yield cyclic dynamics of allele frequencies ("Red Queen" dynamics) while G × G where the variance among host genotypes differs between parasite genotypes results in selective sweeps ("arms race" dynamics). Here, we investigate the relative potential for arms race and Red Queen coevolution in a protist host-parasite system, the dinoflagellate Alexandrium minutum and its parasite Parvilucifera sinerae. We challenged nine different clones of A. minutum with 10 clones of P. sinerae in a fully factorial design and measured infection success and host and parasite fitness. Each host genotype was successfully infected by four to ten of the parasite genotypes. There were strong G × Gs for infection success, as well as both host and parasite fitness. About three quarters of the G × G variance components for host and parasite fitness were due to crossing reaction norms. There were no general costs of resistance or infectivity. We conclude that there is high potential for Red Queen dynamics in this host-parasite system. We investigate the relative potential for arms race and Red Queen coevolution in a protist host-parasite system by dissecting the nature of host geontype-by-parasite genotype interactions (G × G). G × Gs were mainly a result of crossing reaction norms, indicating high potential for Red Queen dynamics. © 2014 The AuthorsThis research was funded by the Crafoord Foundation (contract 2011:0882 to RF) and Spanish Ministry of Science and Innovation (project PARAL CTM2009-08399 to EG). L. RĂ„berg was supported by a fellowship from the Swedish Research CouncilPeer Reviewe

    Photoperiod Response in Pensacola Bahiagrass

    Get PDF
    Photoperiod response has been found to influence the growth and development of \u3ePensacola\u27 derived bahiagrass (Paspalum notatum Flugge var. saure Parodi). Four selection cycles [\u3ePensacola= (Cycle 0), Cycle 4, \u3eTifton 9\u27 (Cycle 9) and Cycle 23] resulting from recurrent restricted phenotypic selection (RRPS) of spaced-plants, were field grown in 1999 and 2000, to study photoperiod sensitivity among genotypes. Two day-length treatments were imposed on the field grown plants. One treatment, used only natural light. The second treatment imposed an extended day-length treatment using Quartz-halogen lamps, installed in the field during the fall and winter, to extend day-length to15 hours. The top growth of individual plants was harvested three times during the fall and winter seasons and stolon spread was measured in mid February, 2000. Top growth was increased by the extended day-length treatment for Pensacola and RRPS Cycle 4 in all three harvest dates. Top growth of Tifton 9 was unaffected by the extended light for the September harvest, but increased in the late October and late January harvests. RRPS Cycle 23 plants grown under natural light, out-yielded the plants grown under extended light treatment, for the first two harvests. There were no differences in yields of RRPS Cycle 23 plants from extended or natural light from the January harvest. The later cycles, Tifton 9 and RRPS Cycle 23, were less sensitive to day-length, than RRPS Cycles 0 and 4. Extended daylength, for all cycles, dramatically reduced stolon spread by nearly half that of the plants grown under natural light. Results from this experiment demonstrate a high sensitivity in growth and development of Pensacola-derived bahiagrass to day-length

    Persistence of balsam fir and black spruce populations in the mixedwood and coniferous bioclimatic domain of eastern North America

    Get PDF
    The boreal ecocline (ca 49°N) between the southern mixedwood (dominated by balsam fir) and the northern coniferous bioclimatic domain (dominated by black spruce) may be explained by a northward decrease of balsam fir regeneration, explaining the gradual shift to black spruce dominance. 7,010 sample plots, with absence of major disturbances, were provided by the Quebec Ministry of Forest, Fauna, and Parks. The regeneration (sapling abundance) of balsam fir and black spruce were compared within and between the two bioclimatic domains, accounting for parental trees, main soil type (clay and till) and climate conditions, reflected by summer growing degree-days above 5°C (GDD_5), total summer precipitation (May–August; PP_MA). Parental trees and soil type determined balsam fir and black spruce regeneration. Balsam fir and black spruce, respectively, showed higher regeneration in the mixedwood and the coniferous bioclimatic domains. Overall, higher regeneration was obtained on till for balsam fir, and on clay soils for black spruce. GDD_5 and PP_MA were beneficial for balsam fir regeneration on clay and till soils, respectively, while they were detrimental for black spruce regeneration. At a population level, balsam fir required at least 28% of parental tree basal area in the mixedwood, and 38% in the coniferous bioclimatic domains to maintain a regeneration at least equal to the mean regeneration of the whole study area. However, black spruce required 82% and 79% of parental trees basal area in the mixedwood and the coniferous domains, respectively. The northern limit of the mixedwood bioclimatic domain was attributed to a gradual decrease toward the north of balsam fir regeneration most likely due to cooler temperatures, shorter growing seasons, and decrease of the parental trees further north of this northern limit. However, balsam fir still persists above this northern limit, owing to a patchy occurrence of small parental trees populations, and good establishment substrates

    Manatee (Trichechus manatus) vocalization usage in relation to environmental noise levels

    Get PDF
    Author Posting. © Acoustical Society of America, 2009. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 125 (2009): 1806-1815, doi:10.1121/1.3068455.Noise can interfere with acoustic communication by masking signals that contain biologically important information. Communication theory recognizes several ways a sender can modify its acoustic signal to compensate for noise, including increasing the source level of a signal, its repetition, its duration, shifting frequency outside that of the noise band, or shifting the timing of signal emission outside of noise periods. The extent to which animals would be expected to use these compensation mechanisms depends on the benefit of successful communication, risk of failure, and the cost of compensation. Here we study whether a coastal marine mammal, the manatee, can modify vocalizations as a function of behavioral context and ambient noise level. To investigate whether and how manatees modify their vocalizations, natural vocalization usage and structure were examined in terms of vocalization rate, duration, frequency, and source level. Vocalizations were classified into two call types, chirps and squeaks, which were analyzed independently. In conditions of elevated noise levels, call rates decreased during feeding and social behaviors, and the duration of each call type was differently influenced by the presence of calves. These results suggest that ambient noise levels do have a detectable effect on manatee communication and that manatees modify their vocalizations as a function of noise in specific behavioral contexts.This research was supported by a P.E.O. Scholar Award and National Defense Science and Engineering Fellowship awarded to Jennifer Miksis

    Long-Term Evidence for Fire as an Ecohydrologic Threshold-Reversal Mechanism on Woodland-Encroached Sagebrush Shrublands

    Get PDF
    Encroachment of sagebrush (Artemisia spp.) shrublands by pinyon (Pinus spp.) and juniper (Juniperus spp.) conifers (woodland encroachment) induces a shift from biotic‐controlled resource retention to abiotic‐driven loss of soil resources. This shift is driven by a coarsening of the vegetation structure with increasing dominance of site resources by trees. Competition between the encroaching trees and understory vegetation for limited soil and water resources facilitates extensive bare intercanopy area between trees and concomitant increases in run‐off and erosion that, over time, propagate persistence of the shrubland‐to‐woodland conversion. We evaluated whether tree removal by burning can decrease late‐succession woodland ecohydrologic resilience by increasing vegetation and ground cover over a 9‐year period after fire and whether the soil erosion feedback on late‐succession woodlands is reversible by burning. To address these questions, we employed a suite of vegetation and soil measurements and rainfall simulation and concentrated overland flow experiments across multiple plot scales on unburned and burned areas at two sagebrush sites in the later stages of woodland succession. Prior to burning, tree cover was approximately 28% at the sites, and more than 70% of the area at the sites was intercanopy with depauperate understory vegetation and extensive bare ground (52–60% bare soil and rock). Burning initially increased bare ground across fine (\u3c1 m2) to patch (tens of metres) scales, resulting in enhanced sediment availability at the fine scale, sustained high run‐off and erosion within degraded intercanopies, amplified run‐off and erosion from tree canopy areas, and amplified sediment delivery across fine to patch scales. However, fire‐induced increases in grass cover over nine growing seasons improved infiltration, limited run‐off and sediment delivery from the fine scale, and reduced intercanopy run‐off and erosion at the patch scale. These changes reflect a switch in vegetation structure, triggered by burning and subsequent vegetation re‐establishment, and a shift to biotic control on run‐off and erosion across spatial scales. The responses and persistence over the 9‐year period postfire at the two sites demonstrate that fire can decrease woodland ecohydrologic resilience by altering plant community physiognomy and thereby can reverse the soil erosion feedback on sagebrush shrublands in the later stages of woodland encroachment

    Developmental trajectories of externalizing behaviors in childhood and adolescence [IF: 3.3]

    Get PDF
    This article describes the average and group-based developmental trajectories of aggression, opposition, property violations, and status violations using parent reports of externalizing behaviors on a longitudinal multiple birth cohort study of 2,076 children aged 4 to 18 years. Trajectories were estimated from multilevel growth curve analyses and semiparametric mixture models. Overall, males showed higher levels of externalizing behavior than did females. Aggression, opposition, and property violations decreased on average, whereas status violations increased over time. Group-based trajectories followed the shape of the average curves at different levels and were similar for males and females. The trajectories found in this study provide a basis against which deviations from the expected developmental course can be identified and classified as deviant or nondeviant

    Altered Auditory Feedback In-The-Ear Devices

    Get PDF
    Purpose: This study examined objective and subjective measures of the effect of a self-contained ear-level device delivering altered auditory feedback (AAF) for those who stutter 12 months following initial fitting with and without the device. Method: Nine individuals with developmental stuttering participated. In Experiment 1, the proportion of stuttering was examined during reading and monologue. A self-report inventory inquiring about behavior related to struggle, avoidance and expectancy associated with stuttering was examined in Experiment 2. In Experiment 3, naive listeners rated the speech naturalness of speech produced by the participants during reading and monologue. Results: The proportions of stuttering events were significantly (p < 0.05) reduced at initial fitting and remained so 12 months post follow-up. After using the device for 12 months, self- reported perception of struggle, avoidance and expectancy were significantly (p < 0.05) reduced relative to pre-fitting. Naive listeners rated the speech samples produced by those who stutter while wearing the device significantly more natural sounding than those produced without the device for both reading and monologue (p < 0.0001). Conclusions: These findings support the notion that a device delivering AAF is a viable therapeutic alternative in the treatment of stuttering

    Aphids-induced plant volatiles affect diel foraging behavior of a ladybird beetle Coccinella septempunctata

    Get PDF
    The ladybird beetle Coccinella septempunctata (L.) is an important biocontrol agent of pests such as various aphid species. Despite being one of the most studied coccinellid species, many aspects of its foraging behavior are still not completely understood. This study focuses on the diel foraging behavior of C. septempunctata, investigating their olfactory orientation toward aphid-infested plants, walking activity on plants and on the soil, and feeding rates. In the scotophase the ladybird beetles were significantly more attracted to the odor of aphid-infested plants, on which they also showed considerably higher walking activity then on uninfested controls. Females were more prone to utilize olfactory cues when searching for prey and fed at higher rates than males; this shows that they are better adapted to nocturnal activity, as they require higher food intake. Coccinella septempunctata have the same feeding rate during the scotophase as in the photophase. Our study shows that C. septempunctata has the potential to forage in the scotophase if prey is abundant. The results support the hypothesis that volatiles of aphid-infested plants can attract or arrest foraging adult ladybird beetles, even in the darkness, which makes a considerable contribution to efficient prey search and enhances feeding capacity
    • 

    corecore